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THE SIGNAL RECOVERY PROBLEM

A signal x is to be estimated from data y and some a priori

knowledge:

� Image restoration: y 2 H is a blurred and noise corrupted
version of x.

� Image reconstruction: y is a collection of signals related to
x.

Four basic elements are required to solve this problem:

1. A data formation model, i.e., a mathematical description of
the relation between the original image x and the recorded
data y. For instance,

y = Lx+ u:

2. Some a priori information about the original signal x, the
noise sources, etc.

3. A recovery criterion de�ning the solutions to the problem.

4. A solution method, i.e., a numerical algorithm that will pro-
duce an image that satis�es the recovery criterion.
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MATHEMATICAL SET-UP

� The original signal lies in a real Hilbert space H with

{ scalar product h� j �i

{ norm k � k

{ distance d.

� Typically, H is (a subspace of) L2(
;A; �). In particular:

{ H = L2(RM ) for M -dimensional analog signals.

{ H = `2(ZM ) for M -dimensional discrete-space signals.

{ H = (RN )M for discrete-space, �nite-extent signals.

� The a priori knowledge and the data give rise to a family of
constraints (	i)i2I associated with the property sets

(8i 2 I) Si =
�
x 2 H j x satis�es 	i

	
:

� The feasibility set is

S =
\
i2I

Si:
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MATHEMATICAL SET-UP (cont'd)

� The recovery problem can be posed as a minimization prob-
lem:

Find x 2 S such that f(x) = inf f(S);

where f : H ! ]�1;+1] is an optimality criterion.

� In many cases f cannot be determined objectively and is
constant. The problem is then a feasibility problem:

Find x 2 S:
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MATHEMATICAL SET-UP (cont'd)

� The Fourier transform of x 2 H is denoted by bx.
{ In L2(RM ),bx : RM ! C

� 7!

Z
RM

x(t) exp(�i2�� � t)dt:

{ In H = `2(ZM ),bx : [�1=2; 1=2[M ! C

� 7!
X
n2ZM

x(n) exp(�i2�� � n):

{ In H = (RN )M , we obtain the DFTbx : N ! C

k 7!
X
n2N

x(n) exp

�
�i

2�

N
k � n

�
;

where N = f0; : : : ; N � 1gM .
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SIGNAL RECOVERY WITH FOURIER INFORMATION

Pieces of information that may be available about bx (A � RM ):

� Support: bx1A = 0 (closed vector subspace)

� Moments:
R
s bx = �, e.g., s : � 7! j�jp

(closed aÆne hyperplane)

� Positivity: bx1A � 0
(closed convex cone)

� Phase: bx1A = jbxj exp(i')1A, ' prescribed
(closed convex cone)

� Bounded energy: kbx1Ak2 � �
(closed ball)

� Bounded residual energy: kby � bl bxk2 � �
(closed convex set)

� Upper modulus envelope: jbxj1A � m1A, m prescribed
(closed convex set)

� Modulus envelope : n1A � jbxj1A � m1A, m; n prescribed
(nonconvex set, unless m1A � 0)

� Modulus : jbxj1A = m1A, m prescribed
(nonconvex set)
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IMPORTANCE OF PHASE INFORMATION

Clockwise from upper left: x, y, F�1
�
jbxj exp(i\ by)�,

and F�1
�
jbyj exp(i\ bx)�.
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NONCONVEXITY OF THE MODULUS CONSTRAINT I

Im bx(�)

Re bx(�)

�

m(�)

bx(�0)

bx(�1)

\ bx(�0)

�0 �1

1-D analog representation of the constraint jbxj = m.
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NONCONVEXITY OF THE MODULUS CONSTRAINT II

�

�

�

�

x(0)

x(1)

m(1)��

m(0)��

2-point DFT representation of the constraint jbxj = m.(
jx(0) + x(1)j = jbx(0)j = m(0)

jx(0)� x(1)j = jbx(1)j = m(1):

The feasibility set consists of 4 isolated points.
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CONVEXIFICATION OF THE MODULUS CONSTRAINT

� A number of eÆcient algorithms are available to solve con-
vex minimization and feasibility problems.

� Can the phase retrieval problem be convexi�ed in order to
take advantage of these tools?

� We describe three convexi�cation approaches.
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CONVEXITY OF THE MODULUS CONSTRAINT I

� Instead of working with x itself, work with its autocorrelation
rxx = x ? x_.

� The spectral density of x is Sxx = crxx = jbxj2.
� In the autocorrelation space, the nonconvex modulus con-
straint

jbxj1A = m1A

therefore becomes a convex (actually aÆne) constraintcrxx1A = m
21A

and its carries implicitly the conical convex constraintcrxx � 0:

� Conceptually, a solution can be obtained as follows:

{ If other relevant constraints on the signal yield convex
constraints in the autocorrelation space, solve the result-
ing convex problem and obtain rxx.

{ Use spectral factorization to construct bx from crxx (pos-
sible only in certain 1-D problems in general).
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CONVEXITY OF THE MODULUS CONSTRAINT II

� A subset Si of a real vector space (E;�;�) is convex if

(8� 2 ]0; 1[)(8(x; y) 2 S2
i ) (�� x)� ((1� �)� y) 2 Si:

� Let ` be the subset of `1 of discrete-time 1-D signals whose
Fourier transform is nonzero a.e.

� De�ne

(8� 2 R)(8(x; y) 2 `�`)

(
x� y = x ? y

�� x = F�1
�
exp(� ln(bx))�:

� Fact: (`;�;�) is a vector space.

� It was observed by C�etin that the modulus constraint set

Si =
�
x 2 ` j jbxj1A = m1A

	
is convex in (`;�;�).
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CONVEXITY OF THE MODULUS CONSTRAINT II (cont'd)

� The scalar product between two signals x and y in ` can be
de�ned as

hx j yi =

Z 1=2

�1=2

ln(bx(�))ln(by(�)) d�:
� In some problems, other useful constraints may be convex
in ` and one can therefore solve the phase retrieval problem
in a convex optimization framework.

� Unfortunately, many useful constraints which are convex in
`2 are no longer convex in `.
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CONVEXITY OF THE SUBMODULUS CONSTRAINT III

Q: How much is lost by replacing the nonconvex set

Si =
�
x 2 H j jbxj1A = m1A

	
by its convex hull, i.e., the convex set

Si =
�
x 2 H j jbxj1A � m1A

	
?
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CONVEXITY OF THE SUBMODULUS CONSTRAINT III
(cont'd)

A: No general answer but:

� If the only nonconvex constraint is the modulus constraint,
an approximate solution should be sought via a convexity
algorithm with the submodulus set.

� By projecting this solution onto the exact modulus set, one
can measure a \feasibility gap" and assess whether further
processing is necessary.

� The above convexi�cation approach is quite common in sig-
nal feasibility problems. For instance, with the linear model

y = Lx+ b

the nonconvex exact residual variance set

Sv =
�
x 2 H j �� � kLx� yk2 � �+

	
is replaced by its convex hull

S+
v =

�
x 2 H j kLx� yk2 � �+

	
� This approach gives satisfactory results if the remaining con-
straints are discriminating enough.

15



FEASIBILITY IN THE SIGNAL SPACE

S

Find x 2 S:
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FEASIBILITY IN THE PRODUCT SPACE

� Suppose we havem constraints and de�ne them-fold carte-
sian product space H = Hm

� Take weights (!i)1�i�m in ]0; 1] such that
Pm

i=1!i = 1.

� H is a Hilbert space with norm

jjj � jjj : (x1; : : : ; xm) 7!

vuut mX
i=1

!ikxik2:

� In H, de�ne the cartesian product of the constraint sets

S = S1 � � � � � Sm

and the diagonal subspace

D =
�
(x; : : : ; x) j x 2 H

	
:
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FEASIBILITY IN THE PRODUCT SPACE (cont'd)

� The m-set feasibility problem in H

Find x 2 S =
m\
i=1

Si

is equivalent to the 2-set feasibility problem in H

Find x 2 S \D:

D

S
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METRIC PROJECTIONS

� Let Si be a closed set

� The projector onto Si is the set-valued mapping

�i : x 7!

�
p 2 Si j kx� pk = inf

y2Si
kx� yk

�

� The set �i(x) of projections of x onto Si

{ is closed and bounded

{ may possibly empty in in�nite dimension

{ may contain more than one point

� Almost uniqueness of projections: the set of points which
have more then one projection onto a set is \negligible"
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PROJECTION ONTO THE FOURIER MODULUS SET

Si =
�
x 2 L2 j jbxj1A = m1A

	
� Si is neither convex nor weakly closed.

� Every signal x 2 L2 has at least one projection onto Si
which is de�ned by (see p. 8)bpi = bx1{A +m exp(i\ bx)1ArB +m exp(i')1B;

whereB � A is such that bx1B = 0 a.e. and ' : B ! [0; 2�[
is any (measurable) function.

� The projection is unique if m1B = 0 a.e., in particular ifbx1A 6= 0 a.e.

Remark: If A = R and x has compact support, then bx 6= 0
a.e. (the Fourier zeros of a compactly supported function are
isolated). Hence, in the Gerchberg-Saxton algorithm, projec-
tions are always unique since support truncation precedes the
projection onto Si.
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METHOD OF SUCCESSIVE PROJECTIONS (MOSP)

� MOSP consists in projecting sequentially an initial estimate
onto the sets in a cyclic manner.

� It is described by the recursion

(8n 2 N ) xn+1 2 �n (modm)+1(xn);

where �i is the projector onto Si.

� In the convex case, MOSP coincides with POCS (projection
onto convex sets).

� MOSP converges locally (PLC & Trussell, 1990)
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PARALLEL PROJECTIONS METHOD (PPM)

� Apply MOSP with the 2 sets of the product spaceH (p. 18).

� The algorithm is therefore de�ned by the set-valued recur-
sion

xn+1 2

(X
i2I

!ipi j (8i 2 I) pi 2 �i(xn)

)
:
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PPM ALGORITHM IN THE PRODUCT SPACE
(CONVEX CASE)

s

dx

D

S

n

n
n

x*
n n

+

X ... X 1 m= S           S

2d x-
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PPM ALGORITHM IN THE ORIGINAL SPACE
(CONVEX CASE)

P (x  )

SSS

S

S

S

x

aaaaaaaa
x

+

d

n

n

n

n

n2d -x
P (x  )

P (x  )

S

P (x  )

m

m

1

2

2

1

3

3

+
n n

+n
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CONVERGENCE OF PPM: THE CONVEX CASE

� Assume that, in addition to the above conditions, the sets
are convex.

� The recursion becomes

(8n 2 N ) xn+1 =
X
i2I

!iPi(xn):

� De�ne
�: H ! [0;+1[

x 7!
1

2

X
i2I

!id(a; Si)
2

� Let G be the set of global minimizers of � (the approxi-
mate feasible solutions when the set theoretic formulation is
inconsistent).

� If S 6= �, then G = S = fx 2 H j �(x) = 0g.

� Suppose that one of the sets is bounded. Then G 6= � and
every sequence (xn)n�0 generated by PPM converges weakly
to a point in G.
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CONVERGENCE OF PPM: THE GENERAL CASE

� Assume that all the Si's are boundedly weakly compact and
that one of them is weakly compact.

� PPM xn+1 2 �(xn) where � =
P

i2I !i�i.

� De�nitions:

{ L is the set of local minimizers of �

{ F = fx 2 H j fxg � �(x)g the �xed points set of �

{ T = fx 2 H j fxg = �(x)g the stationary points of �

{ C is the set of all cluster points of all (xn)n�0 of �.

� Result: S � G � L � T � F = C 6= ;.

� In practice, this result can be strengthened by noting that
(F n S){ is dense in H. Thus,

{ Almost every �xed point is a stationary point.

{ Any cluster point is a local minimum, and constitutes a
local approximate solution to the feasibility problem.

{ If S 6= � and x0 lies in a suitable region of attraction,
every cluster point of an orbit (xn)n�0 is feasible.
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BREGMAN PROJECTIONS

� In the above algorithms, the di�erence between two signals
x and y is measured by D(x; y) = kx� yk2=2.

� Let f : H ! ]�1;+1] be a convex, di�erentiable func-
tion.

� The Bregman \distance" between x and y is

D(x; y) = f(x)� f(y)� hx� y j rf(y)i:

� For f = k � k2=2, one recovers D(x; y) = kx� yk2=2.

� In RN , if f is Shannon's negentropy,

f :
�
x(i)
�
1�i�N

7!

(PN
i=1 x

(i) lnx(i) if x � 0

+1 otherwise,

one obtains the Kullback-Leibler divergence between x � 0
and y > 0,

D(x; y) =

NX
i=1

x(i) ln
�
x(i)=y(i)

�
�

NX
i=1

x(i) +

NX
i=1

y(i):
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BREGMAN PROJECTIONS (cont'd)

� Potentially, the standard projections in the previous algo-
rithms can be replaced by Bregman projections: pi is a Breg-
man projection of x onto Si if

D(pi; x) = inf
y2Si

D(y; x)

� Bregman projections have not yet been used in nonconvex
problems. In some convex medical imaging problems they
have been reported to be better than standard methods.

� An orbit generated by Bregman projections follows a very
di�erent path than one generated via classical projections.
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